Bottom-Up Coarse-Graining of Peptide Ensembles and Helix-Coil Transitions


J. F. Rudzinski & W. Noid, Bottom-Up Coarse-Graining of Peptide Ensembles and Helix-Coil Transitions, J. Chem. Theory Comput., 11(3) (2015)

This work investigates the capability of bottom-up methods for parametrizing minimal coarse-grained (CG) models of disordered and helical peptides. We consider four high-resolution peptide ensembles that demonstrate varying degrees of complexity. For each high-resolution ensemble, we parametrize a CG model via the multiscale coarse-graining (MS-CG) method, which employs a generalized Yvon−Born−Green (g-YBG) relation to determine potentials directly (i.e., without iteration) from the high-resolution ensemble. The MS-CG method accurately describes high-resolution models that fluctuate about a single conformation. However, given the minimal resolution and simple molecular mechanics potential, the MS-CG method provides a less accurate description for a high-resolution peptide model that samples a disordered ensemble with multiple distinct conformations. We employ an iterative g-YBG method to develop a CG model that more accurately describes the relevant distribution functions and free energy surfaces for this disordered ensemble. Nevertheless, this more accurate model does not reproduce the cooperative helix−coil transition that is sampled by the high resolution model. By comparing the different models, we demonstrate that the errors in the MS-CG model primarily stem from the lack of cooperative interactions afforded by the minimal representation and molecular mechanics potential. This work demonstrates the potential of the MS-CG method for accurately modeling complex biomolecular structures, but also highlights the importance of more complex potentials for modeling cooperative transitions with a minimal CG representation.